Laboratory of New Materials Simulation

Laboratory of new materials simulation engages a wide spectrum of problems in material science using quantum-chemical simulation methods.
Laboratory was created from the theoretical research group in 2015 in order to support the experiments are carried out in FSBSI TISNCM.

Staff members:



Dr. habil., head of laboratory
Pavel Sorokin
(CV, ResearchGate, Google Scholar)
phone number.: +7 (499) 400-62-25 (416)
mobile phone: +7-916-474-66-64
e-mail.:
skype: pavel_b_sorokin


 

Ph.D., research scientist
Liubov Antipina (CV)
phone number: +7 (499) 400-62-25 (416)
mobile phone: +7-916-746-96-58
e-mail.:
skype: lyubov_antipina


Ph.D., visiting researcher
Dmitry Kvashnin
(CV, Google Scholar)
mobile phone.: +7-916-236-75-35
e-mail.:
skype: dmitry.g.kvashnin


 

Postgraduate student, trainee researcher
Sergey Erohin (CV)
phone number: +7 (499) 400-62-25 (416)
mobile phone: +7-915-316-01-44
e-mail.:


Postgraduate student, trainee researcher
Konstantin Larionov (CV)
phone number: +7 (499) 400-62-25 (416)
mobile phone: +7-925-310-70-56
e-mail.:
skype: antoniomargareti


 

Ph.D., supercomputer cluster administrator
Alexander Kvashnin (CV)
mobile phone: +7-915-175-05-40
e-mail.:




Master, trainee researcher
Svetlana Bondarenko
phone number: +7 (499) 400-62-25 (416)
mobile phone: +7-916-054-07-68
e-mail.:


 

Master, trainee researcher
Khabibrakhmanov Almaz
phone number: +7 (499) 400-62-25 (416)
mobile phone: +7-965-592-16-63
e-mail.:


Master, trainee researcher
Sukhanova Ekaterina
phone number: +7 (499) 400-62-25 (416)
mobile phone: +7-916-072-92-91
e-mail.:
   



The search for new superhard materials

It is well known that diamond is the hardest crystal among all known materials. Superhard materials are used in various fields: microelectronics, engineering works, for sharpening clean surfaces for optical components, memory disks, drums for copy machines, for mechanical treatment of various solid metals, alloys and etc. Currently, the diamond anvils are used for the achieving ultrahigh pressure. Applying of new stronger and harder materials leads to increasing the opportunity of experiments to create ultrahigh pressures and synthesize new high pressure phases, to expand scientific knowledge, techniques and technologies. However, there are a number of cases where the application of diamond is impossible or undesirable. For example, diamond can react with treated material at high temperature. Also diamond is quite expensive material.

The search of new carbon materials which are stronger and harder than diamond is one of the most prospective developing areas of modern materials science. On the other hand, producing of a material with good hardness characteristics is important not only from a practical point of view but also for understanding the connection between the microscopic characteristics of the interatomic interactions and macroscopic properties of matter.

One branch of our investigations is linked with the nature of outstanding mechanical stiffness of amorphous materials based on polymerized fullerene molecules. The beginning of such investigations has been made by the number of experimental results obtained in FSBI TISNCM [DOI: 10.1016/S0925-9635(97)00232-X, DOI: 10.1016/0375-9601(96)00483-5], where a new superhard phase based on the fullerene C60 with hardness up to 310 GPa which is much higher than the diamond hardness (137 GPa) called tisnumit was reported [DOI: 10.1007/978-94-010-9598-3_19]. This material was obtained at pressures and temperatures above than 13 GPa and 2100 K respectively. The model of an amorphous nanocomposite based on polymerized fullerene and explanation of ultrahigh stiffness were proposed by our laboratory. The result is shown at Figure 1. [1]



Figure 1. Material based on polymerized fullerene molecules with outstanding mechanical stiffness [10.1021/acs.jpclett.5b00748]

The polycrystal materials may also have the great values of hardness and bulk moduli. [DOI: 10.1038/ncomms3343, 10.1063/1.2034101]. The explanation of this effect was proposed by ourselves. It was found that some crystallites have anisotropic reaction on uniform strain from every side, they are unequaly deformed in different directions. [2]. Popular-science description of this research could be found, for instance, at Nanometer.ru



Figure 2. Atomic structure of the diamond polycrystal

Fot the first time we predicted the effect of twofold increase of the elastic modulus of graphene due to defect creation [10.1080/1536383X.2010.488160]. Later it was found experimentally [10.1038/nphys3183]. Carried out simulaton showed that this effect is linked with some features of structure of monovacancy defects around which carbon bounds stiffen. Moreover it was found that the effect of increase of graphene stiffness is caused by monovacancy defects only, whereas divacancy defects linked with the rotation of bounds lead to typical decrease of graphene stiffness [3].

The investigations of diamond based nanostructures

Using ab initio (first-principles) methods of calculations the ultrathin diamond films with nanometer thickness, called as diamane were investigated. The chemically induced phase transition in diamanes was studied [4], according which the multilayered graphene can be transformed into diamond film only through the chemical adsorption of adatoms onto the surface (hydrogen, fluorine, etc.). Our laboratory investigated the stability of diamanes and the phase diagram of such transition for the films with different thickness and different types of the surface was obtained. Figure 3 shows the dependence of the phase transition pressure on the film thickness for diamanes with both clean and hydrogenated surfaces. Popular scientific explanation of this work can be found in the number of web resources including Lenta.ru.



Figure 3. Dependence of the phase transition pressure on the diamond film thickness

The chemically induced phased transition allows the fabrication of the carbon films not only with diamond crystal structure but also with lonsdaleite structure. The hardness of lonsdaleite (hexagonal diamond) is much higher than hardness of diamond, but, unfortunately, lonsdaleite has not been yet experimentally obtained as a freestanding monocrystal. Thus, chemically induced phase transition offers the opportunities of the experimental fabrication of lonsdaleite monocrystal films. Our laboratory studied the mechanical, electronic and transport properties of nanometer thick lonsdaleite films, and the phase diagram of the transition from multilayered graphene to lonsdaleite film was obtained which determines the main conditions (temperature and pressure) for experimental fabrication of such films. [5]

Research of new nanomaterials with advanced properties

Collaboration with Tulane University, USA, resulted in work published in Nature Physics [6] where the investigation of new 2D Nb3SiTe6 film was carried out. It was obtained in both experimental and theoretical ways that when the thickness of Nb3SiTe6 crystal is reduced, an unexpected, enhanced weak-antilocalization signature in magnetotransport appears, attributable to the suppression of e-ph interaction caused by phonons 2D confinement.





Figure 4. Geometrical structure of Nb3SiTe6 and electron density distribution that illustrate the mechanism of bound in structure.

The tendency of graphitization in ultrathin films of ion composition was shown including structures such as rock salt and CsCl. In paper published in Nano Letters in 2014 [7], the critical thickness for a number of compounds was calculated: if the thickness is less than the critical one, spontaneous transition of the cubic phase in the layered graphite-like phase happens. The process of graphitization of ionic compounds was investigated more properly for the thin layers of cubic sodium chloride. It was found [8] that that at the nanoscale ultrathin layers of cubic NaCl become unstable due to the dipole moment destabilizing the surface. As a result the graphite-like phase appeared. Also the critical thickness at which could be obtained the conversion of cubic NaCl to graphite-like film was found.

COMPUTATIONAL METHODS

The research methods applied in our laboratory include different theoretical approaches: ab initio, semiempirical methods and classical potentials.

The electronic and mechanical properties of all investigated structures are determined with methods of density functional theory (DFT) implemented in such software packages as VASP, QuantumEspresso, SIESTA, which allows to estimate a wide range of properties (mechanical, electronic, optical) of bulk and nanoscale materials.

Also DFT method is widely used for calculation of phase diagrams (Figure 5). Using this method it is possible to estimate the values of phase transition pressure with good accuracy in a wide temperature range and allows to study the metastable phases which are not always easy to obtain in experiments.



Figure 5. Phase diagram for graphite-diamond transition obtained in experiment in comparison with simulation

Classical molecular dynamics method with empirical interatomic potentials implemented in such software packages as LAMMPS и GULP are also used in our laboratory. The main advantage of this approach is possibility to investigate materials consisted of hundreds of thousands of atoms with sufficient accuracy.

All calculations are carrying out using high performance computing cluster T-Platforms based on T-Blade 1.1.


 


Group photo



2018

2015

2014



Publications

2018

Papers in scientific journals:
  • D.M. Tang, D.G. Kvashnin, O. Cretu, Y. Nemoto, F. Uesugi, M. Takeguchi, X. Zhou, F.C. Hsia, C. Liu, P.B. Sorokin, N. Kawamoto, M. Mitome, H.M. Cheng, D. Golberg, Y. Bando Chirality transitions and transport properties of individual few-walled carbon nanotubes as revealed by in situ TEM probing Ultramicroscopy 194, 108-116 (2018) (DOI: 10.1016/j.ultramic.2018.07.012)
  • D.G. Kvashnin, A.T. Matveev, O.I. Lebedev, B.I. Yakobson, D. Golberg, P.B. Sorokin, D.V. Shtansky Ultrasharp h-BN nanocones and origin of their high mechanical stiffness and large dipole moment J. Phys. Chem. Lett. 9, 5086–5091 (2018) (DOI: 10.1021/acs.jpclett.8b02122)
  • K.V. Larionov, D.G. Kvashnin, P.B. Sorokin 2D FeO: a new member in 2D metal oxide family J. Phys. Chem. C 122, 30, 17389-17394 (2018) (DOI: 10.1021/acs.jpcc.8b06054)
  • N.A. Nebogatikova, I.V. Antonova, S.V. Erohin, D.G. Kvashnin, A. Olejniczak, V.A. Volodin, A.V. Skuratov, A.V. Krasheninnikov, P.B. Sorokin, L.A. Chernozatonskii Nanostructuring few-layer graphene films by swift heavy ions for electronic application: tuning of electronic and transport properties Nanoscale 10, 14499-14509 (2018) (DOI: 10.1039/C8NR03062F)
  • K.V. Larionov, Z.I. Popov, M.A. Vysotin, D.G. Kvashnin, P.B. Sorokin Study of the new two-dimensional compound CoC JETP Lett. 108, 1, 13-17 (2018) (DOI: 10.1134%2FS0021364018130106)
  • K. Faerstein, D.G. Kvashnin, A.M. Kovalskii, Z.I. Popov, P.B. Sorokin, D. Golberg, D. Shtansky Compressive properties of hollow BN nanoparticles: theoretical modeling and testing in a high-resolution transmission electron microscope Nanoscale 10, 8099-8105 (2018) (DOI: 10.1039/C8NR00857D)
  • M. Zhou, Q. Weng, Z.I. Popov, Y. Yang, L.Yu. Antipina, P.B. Sorokin, X. Wang, Y. Bando, D. Golberg Construction of polarized carbon–nickel catalytic surfaces for potent, durable, and economic hydrogen evolution reactions ACS Nano 12, 5, 4148-4155 (2018) (DOI: 10.1021/acsnano.7b08724)
  • V.D. Blank, V.D. Churkin, B.A. Kulnitskiy, I.A. Perezhogin, A.N. Kirichenko, V.N. Denisov, S.V. Erohin, P.B. Sorokin and M.Y. Popov Phase diagram of carbon and the factors limiting the quantity and size of natural diamonds Nanotechnology 29, 11, 115603 (2018) (DOI: 10.1088/1361-6528/aaa857)
  • V.D. Blank, V.D. Churkin, B.A. Kulnitskiy, I.A. Perezhogin, A.N. Kirichenko, S.V. Erohin, P.B. Sorokin and M.Y.Popov Pressure-Induced Transformation of Graphite and Diamond to Onions Crystals 8, 68 (2018) (DOI: 10.3390/cryst8020068)
  • A.P. Tsapenko, A.E. Goldt, E. Shulga, Z.I. Popov, K.I. Maslakov, A.S. Anisimov, P.B. Sorokin, A.G. Nasibulin Highly conductive and transparent films of HAuCl4-doped single-walled carbon nanotubes for flexible applications Carbon 130, 448-457 (2018)
  • T. Watanabe, Y. Yamada, A. Koide, S. Entani, S. Li, Z.I. Popov, P.B. Sorokin, H. Naramoto, M. Sasaki, K. Amemiya, S. Sakai Interface-induced perpendicular magnetic anisotropy of Co nanoparticles on single-layer h-BN/Pt(111) Appl. Phys. Lett. 112, 2, 022407 (2018) (DOI: 10.1063/1.5010836)
  • A. Konopatsky, K.L. Firestein, D.V. Leybo, Z.I. Popov, K.V. Larionov, A.E. Steinman, A.M. Kovalskii, A.T. Matveev, A. Manakhov, P.B. Sorokin, D. Golberg, D.V. Shtansky BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments Catal. Sci. Technol. 8, 1652-1662 (2018) (DOI: 10.1039/C7CY02207G)
  • A.G. Kvashnin, P.V. Avramov, D.G. Kvashnin, L.A. Chernozatonskii, P.B. Sorokin The features of electronic, mechanical and electromechanical properties of fluorinated diamond films of nanometer thickness J. Phys. Chem. C. 121, 51, 28484-28489 (2017) (DOI: 10.1021/acs.jpcc.7b07946)
  • A.G. Kvashnin, P.B. Sorokin, L.A. Chernozatonskii Layered heterostructures based on graphene, hexagonal zinc oxide and molybdenum disulfide: Modeling of geometry and electronic properties Comp. Mat. Sci. 142, 32-37 (2018) (DOI: 10.1016/j.commatsci.2017.09.040)

2017

Papers in scientific journals:
  • Q. Weng, D.G. Kvashnin, O. Cretu, M. Zhou, C. Zhang, D.M. Tang, P.B. Sorokin, Y. Bando, D. Golberg Optical, electronic and magnetic property tuning of boron nitride nanosheets with oxygen doping and functionalization Adv. Mater. 29, 28, 1700695 (2017) (DOI: 10.1002/adma.201700695)
  • Y.A. Kvashnina, D.G. Kvashnin, A.G. Kvashnin, P.B. Sorokin New allotropic forms of carbon based on С60 and С20 fullerenes with specific mechanical characteristics JETP Lett. 105, 7, 419-425 (2017) (DOI: 10.1134%2FS0021364017070104)
  • E. Kano, D.G. Kvashnin, S. Sakai, L.A. Chernozatonskii, P.B. Sorokin, A. Hashimoto, M. Takeguchi One-atom-thick 2D copper oxide clusters on graphene Nanoscale 9, 3980-3985 (2017) (DOI: 10.1039/C6NR06874J)
  • D.G. Kvashnin, O.P. Kvashnina, P.V. Avramov, P.B. Sorokin, A.G. Kvashnin Novel hybrid C/BN two-dimensional heterostructures Nanotechnology 28, 085205 (2017) (DOI: 10.1088/1361-6528/aa55e9)
  • Y.A. Kvashnina, A.G. Kvashnin, L.A. Chernozatonskii, P.B. Sorokin Fullerite-based nanocomposites with ultrahigh stiffness. theoretical investigation Carbon 115, P. 546-549 (2017) (DOI: 10.1016/j.carbon.2017.01.028)
  • M. Annenkov, V. Blank, B. Kulnitskiy, K. Larionov, D. Ovsyannikov, I. Perezhogin, M. Popov, P. Sorokin Boron carbide nanoparticles for high-hardness ceramics: crystal lattice defects after treatment in a planetary ball mill J. Eur. Cer. Soc. 37, 4, 1349-1353 (2017) (DOI: 10.1016/j.jeurceramsoc.2016.12.001)
  • A.V. Telichko, S.V. Erohin, G.M. Kvashnin, P.B. Sorokin, B.P. Sorokin, V.D. Blank Diamond’s third order elastic constants: ab initio calculations and experimental investigation J. Mater. Sci. 52, 3447-3456 (2017) (DOI: 10.1007/s10853-016-0633-x)

2016

Papers in scientific journals:
  • Z.I. Popov, N.S. Mikhaleva, M.A. Visotin, A.A. Kuzubov, S. Entani, H. Naramoto, S. Sakai, P.B. Sorokin, P.V. Avramov Electronic structure and spin states of 2D graphene/VX2 (X=S,Se) heterostructures Phys. Chem. Chem. Phys. 18, 33047-33052 (2016) (DOI: 10.1039/C6CP06732H)
  • D.G. Kvashnin, M. Ghorbani-Asl, D.V. Shtansky, D.V. Golberg, A.V. Krasheninnikov, P.B. Sorokin Mechanical properties and current-carrying capacity of Al reinforced with graphene/BN nanoribbons: a computational study Nanoscale 8, 20080-20089 (2016) (DOI: 10.1039/C6NR07206B)
  • X. Liu, J. Liu, L.Yu. Antipina, J. Hu, C. Yue, A.M. Sanchez, P.B. Sorokin, Z. Mao, J. Wei Direct fabrication of functional ultrathin single-crystal nanowires from quasi-one-dimensional Van der Waals crystals Nano Letters 16, 6188-6195 (2016) (DOI: 10.1021/acs.nanolett.6b02453)
  • L.Yu. Antipina, A.G. Kvashnin, P.B. Sorokin, L.A. Chernozatonskii The possible formation of magnetic FeS2 phase in two-dimensional MoS2 matrix Phys. Chem. Chem. Phys. 18, 26956-26959 (2016) (DOI: 10.1039/C6CP05065D)
  • S. Sakai, S. Majumdar, Z.I. Popov, P.V. Avramov, S. Entani, Y. Hasegawa, Y. Yamada, H. Huhtinen, H. Naramoto, P.B. Sorokin, Y. Yamauchi Proximity-induced spin polarization of graphene in contact with half-metallic manganite ACS Nano 10, 8, 7532-7541 (2016) (DOI: 10.1021/acsnano.6b02424)
  • S. Entani, M. Mizuguchi, H. Watanabe, L.Yu. Antipina, P.B. Sorokin, P.V. Avramov, H. Naramoto, S. Sakai Effective fluorination of single-layer graphene by high-energy ion irradiation through a LiF overlayer RSC Advances 6, 68525-68529 (2016) (DOI: 10.1039/C6RA09631J)
  • L.A. Chernozatonskii, A.G. Kvashnin, P.B. Sorokin Heterostructures based on graphene and MoS2 layers decorated by C60 fullerenes Nanotechnology 27, 36, 365201 (2016) (DOI: 10.1088/0957-4484/27/36/365201)
  • E.Y. Pashkin, A.M. Pankov, B.A. Kulnitskiy, I.A. Perezhogin, A.R. Karaeva, V.Z. Mordkovich, M.Y. Popov, P.B. Sorokin, V.D. Blank The unexpected stability of multiwall nanotubes under high pressure and shear deformation Appl. Phys. Lett. 109, 081904(3) (2016) (DOI: 10.1063/1.4961618)
  • A.G. Kvashnin, E.Y. Pashkin, B.I. Yakobson, P.B. Sorokin Ionic graphitization of ultrathin films of ionic compounds J. Phys. Chem. Lett. 7, 2659-2663 (2016) (DOI: 10.1021/acs.jpclett.6b01214)
  • K.L. Firestein, D.G. Kvashnin, A.N. Sheveyko, I.V. Sukhorukova, A.M. Kovalskii, A.T. Matveev, O.I. Lebedev, P.B. Sorokin, D. Golberg, D.V. Shtansky Structural analysis and atomic simulation of Ag/BN nanoparticle hybrids obtained by Ag ion implantation Materials & Design 98, 167-173 (2016) (DOI: 10.1016/j.matdes.2016.02.108)

2015

Papers in scientific journals:
  • L.Yu. Antipina, P.B. Sorokin, Converting chemically functionalized few-layer graphene to diamond films: A computational study. J. Phys. Chem. C 119, 2828-2836 (2015) (DOI: 10.1021/jp510390b, download pdf)
  • D.G. Kvashnin, P. Vancsó, L.Yu. Antipina, G.I. Márk, L.P. Biró, P.B. Sorokin and L.A. Chernozatonskii Bi-layered graphene nanostructures with periodically arranged hexagonal holes. Nano Research 8, 4, 1250-1258 (2015) (DOI: 10.1007/s12274-014-0611-z, download pdf)
  • S. Entani, L.Yu. Antipina, P.V. Avramov, M. Ohtomo, Y. Matsumoto, N. Hirao, I. Shimoyama, H. Naramoto, Y. Baba, P.B. Sorokin and S. Sakai, Graphene/sapphire heterostructure: contracted interlayer distance and hole-doping through electrostatic interactions, Nano Research 8, 5, 1535-1545 (2015) (DOI: 10.1007/s12274-014-0640-7, download pdf)
  • Yu.A. Kvashnina, A.G. Kvashnin, M.Yu. Popov, B.A. Kulnitskiy, I.A. Perezhogin, E.A. Tyukalova, L.A. Chernozatonskii, P.B. Sorokin, V.D. Blank, Toward the ultra-incompressible carbon materials. Computational simulation and experimental observation, J. Phys. Chem. Lett. 6, 2147–2152 (2015) (DOI: 10.1021/acs.jpclett.5b00748, download pdf)
  • J. Hu, X. Liu, C.L. Yue, J.Y. Liu, H.W. Zhu, J.B. He, J. Wei, Z.Q. Mao, L.Yu. Antipina, Z.I. Popov, P.B. Sorokin, T.J. Liu, P.W. Adams, S. Radmanesh, L. Spinu, H. Ji and D. Natelson, Enhanced electron coherence in atomically thin Nb3SiTe6, Nature Physics 11, 6, 471-476 (2015) (DOI: 10.1038/nphys3321, download pdf)
  • D.G. Kvashnin, P.B. Sorokin Effect of ultrahigh stiffness of defective graphene from atomistic point of view J. Phys. Chem. Lett. 6, 12, 2384–2387 (2015) (DOI: 10.1021/acs.jpclett.5b00740, download pdf)
  • A.G. Kvashnin, P.B. Sorokin, B.I. Yakobson Flexoelectricity in carbon nanostructures: nanotubes, fullerenes, nanocones J. Phys. Chem. Lett. 6, 2740-2744 (2015) (DOI: 10.1021/acs.jpclett.5b01041, download pdf)
  • D.G. Kvashnin, P.B. Sorokin, D. Shtansky, D. Golberg, A.V. Krasheninnikov, Line and rotational defects in boron-nitrene: structure, energetics, and dependence on mechanical strain from first-principles calculations, Phys. Status Solidi B 252, 1725–1730 (2015) (DOI: 10.1002/pssb.201451699, download pdf)
  • S. V. Erohin, P. B. Sorokin Elastic properties of nanopolycrystalline diamond: The nature of ultrahigh stiffness Appl. Phys. Lett. 107, 121904(3) (2015) (DOI: 10.1063/1.4931493, download pdf)

2014

Papers in scientific journals:
  • Kvashnin A.G., Chernozatonskii L.A., Yakobson B.I., Sorokin P.B. Phase diagram of quasi-two-dimensional carbon, Nano Letters, V.14, P.676-681 (2014) (DOI: 10.1021/nl403938g, download pdf).
  • Kvashnin A.G., Sorokin P.B., Lonsdaleite films with nanometer thickness, J. Phys. Chem. Lett. V.5, P. 541-548 (2014) (DOI: 10.1021/jz402528q, download pdf).
  • Y. Sun, A.G. Kvashnin, P.B. Sorokin, B.I. Yakobson, W.E. Billups Radiation-induced nucleation of diamonds from amorphous carbon. Effect of hydrogen, J. Phys. Chem. Lett. 5, 11, 1924-1928 (2014) (DOI: 10.1021/jz5007912, download pdf)
  • D.M.Tang., D.G. Kvashnin, S. Najmaei, Y. Bando, K. Kimoto, P. Koskinen, P. Ajayan, B.I. Yakobson, P.B. Sorokin, J. Lou, D. Golberg, Nanomechanical cleavage of molybdenum disulphide atomic layers, Nature Commun. 5, 3631(8) (2014) (DOI: 10.1038/ncomms4631, download pdf)
  • D.G. Kvashnin, L.Yu. Antipina, P.B. Sorokin, R. Tenne, D. Golberg, Theoretical aspects of WS2 nanotube chemical unzipping, Nanoscale 6, 8400-8404 (2014) (DOI: 10.1039/C4NR00437J, download pdf)
  • A.V. Krasheninnikov, N. Berseneva, D.G. Kvashnin, J. Enkovaara, T. Björkman, P. Sorokin, D. Shtansky, R.M. Nieminen, D. Golberg Towards stronger Al-BN nanotube composite materials: getting insight into bonding at the Al/BN interface from first-principles calculations J. Phys. Chem. C 118, 46, 26894–26901 (2014) (DOI: 10.1021/jp509505j, download pdf)
  • P.B. Sorokin, A.G. Kvashnin, Z. Zhu, D. Tománek Spontaneous graphitization of ultrathin cubic structures: A computational study Nano Lett. 14, 12, 7126–7130 (2014) (DOI: 10.1021/nl503673q, download pdf)
  • A.G. Kvashnin, P.B. Sorokin, D. Tománek Graphitic phase of NaCl. Bulk properties and nanoscale stability. J. Phys. Chem. Lett. 5, 22, 4014-4019 (2014) (DOI: 10.1021/jz502046f, download pdf)

Participation in conferences:
  • A.G. Kvashnin, Prediction of formation of graphene-type layers in ultrathin films of ionic compound (oral presentation), Flatlands: Beyond Graphene, Trinity College Dublin (Ireland), July 9-11 2014
  • D.G. Kvashnin, L.A. Chernozatonskii, P.B. Sorokin, Hardening in the two-dimensional nanomaterials by introducing of point defects, book of abstracts of Physics Boat 2014 "Atomic structure of nanosystems from first-principles simulations and microscopy experiments", Helsinki (Finland) - Stockholm (Sweden), June 3-5 2014, p. 35
  • L.Yu. Antipina, P.B. Sorokin, Controlling the 2D carbon films structure and properties by surface functionalization, book of abstracts of Physics Boat 2014 "Atomic structure of nanosystems from first-principles simulations and microscopy experiments", Helsinki (Finland) - Stockholm (Sweden), June 3-5 2014, p. 46.
  • P.B. Sorokin, A.G. Kvashnin, D. Tomanek, Prediction of formation of graphene-type layers in ultrathin films of the ionic compound, book of abstracts of Physics Boat 2014 "Atomic structure of nanosystems from first-principles simulations and microscopy experiments", Helsinki (Finland) - Stockholm (Sweden), June 3-5 2014, p. 55.
  • Y.A. Kvashnina, A.G. Kvashnin, P.B. Sorokin, Carbon superhard nanocomposite based on polymerized fullerenes. Computational study, book of abstracts of Physics Boat 2014 "Atomic structure of nanosystems from first-principles simulations and microscopy experiments", Helsinki (Finland) - Stockholm (Sweden), June 3-5 2014, p. 57.
  • P.B. Sorokin, S.E. Erohin, Investigation of ultrahigh stiffness of diamond nanopolycrystals, book of abstracts of Physics Boat 2014 "Atomic structure of nanosystems from first-principles simulations and microscopy experiments", Helsinki (Finland) - Stockholm (Sweden), June 3-5 2014, p. 68.
  • A.G. Kvashnin, P.B. Sorokin, D. Tomanek, Prediction of formation of graphene-type layers in ultrathin films of ionic compound, book of abstracts of International conference "Flatlands: Beyond Graphene 2014", Dublin, Ireland, July 9-11, 2014. p. 12.
  • P. B. Sorokin, A.G. Kvashnin, L. A. Chernozatonskii, B. I. Yakobson, The Investigation of Phase Transition between Multilayered Graphene and Quasi-2D-Diamond Films, Book of abstracts of XII International Conference on Nanostructured Materials (NANO 2014), Moscow, Russia, July 13-18, 2014, p. 285.

2013

Papers in scientific journals:
  • P. B. Sorokin, L.A. Chernozatonskii. Semiconducting nanostructures based on graphene, Phys. Usp. 56, 105–122 (2013). (DOI: 10.3367/UFNe.0183.201302a.0113, download pdf)
  • Seiji Sakai, Yoshihiro Matsumoto, Manabu Ohtomo, Shiro Entani, Pavel V Avramov, Pavel B Sorokin, Hiroshi Naramoto, High spin polarization at the Fe/C60 interface in the Fe-doped C60 film, Synthetic Metals 173 , 22-25 (2013) (DOI: 10.1016/j.synthmet.2012.10.027, download pdf)
  • D.G. Kvashnin, P.B. Sorokin, J.W. Brüning and L.A. Chernozatonskii, The impact of edges and dopants on the work function of graphene nanostructures. The way to high electronic emission from pure carbon medium, Appl. Phys. Lett. 102, 18, pp. 183112(5) (2013) (DOI: 10.1063/1.4804375, download pdf)
  • Yu.A. Kvashnina, A.G. Kvashnin, P.B. Sorokin, Investigation of new superhard carbon allotropes with promising electronic properties, J. Appl. Phys. 114, 183708(5) (2013) (DOI: 10.1063/1.4829002, download pdf)


Participations in conferences:
  • D. G. Kvashnin, P. B. Sorokin, L. A. Chernozatonskii, Theoretical study of changes of the work function of graphene nanostructures. The way to high electronic emission from pure carbon medium, book of abstracts of Physics Boat 2013 "Atomic structure of nanosystems from first-principles simu lations and microscopy experiments", Helsinki (Finland) - Stokholm (Sweden), June 4-6 2013, p. 62.
  • P. B. Sorokin, D. G. Kvashnin, L. Yu. Antipina, D. V. Golberg, Theoretical aspects of unzipping of WS2 nanotubes, book of abstracts of Physics Boat 2013 "Atomic structure of nanosystems from first-principles simulations and micros-copy experiments", Helsinki (Finland) - Stokholm (Sweden), June 4-6 2013, p. 69.
  • Yu.A. Kvashnina, A.G. Kvashnin, I.V. Dudenkov, L.Yu. Antipina, P.B. Sorokin, Prediction of new superhard carbon allotropes, Abstracts of Joint International Conference “Advanced Carbon NanoStructures”, St Petersburg, Russia, 1 – 5 July 2013 p. 221
  • D. G. Kvashnin, P. B. Sorokin, L. A. Chernozatonskii, Investigation of the strong influence of the edges and dopants to the work function of graphene-based nanostructures, Book of abstracts of International Conference Advanced Carbon Nanostructures (ACNS'2013), St. Petersburg, Russia, July 01-05, 2013. p. - 80.
  • A.G. Kvashnin, L.A. Chernozatonskii, P. B. Sorokin, Diamond films with nanometer thickness: New 2D carbon based nanomaterial, Novel 2D materials: tuning electronic properties on the atomic scale, Bremen, Germany, June 11-14, 2013. p. P28
  • D. G. Kvashnin, P. B. Sorokin, L. Yu. Antipina, D. Golberg, Theoretical explanation of unzipping process of WS2 nanotubes, Abstracts of Symposium F, E-MRS Fall Meeting, Warsaw, Poland,16-20 September 2013, Nano and Advanced Materials Workshop and Fair (NAMF 2013), Satellite of E-MRS Fall Meeting, Warsaw, Poland, 16-19 September 2013
  • A.G. Kvashnin, L.A. Chernozatonskii, B.I. Yakobson, P.B. Sorokin. Investigation of properties of diamond films with nanometer thickness, Abstracts of Symposium F, E-MRS Fall Meeting, Warsaw, Poland,16-20 September 2013, Nano and Advanced Materials Workshop and Fair (NAMF 2013), Satellite of E- MRS Fall Meeting, Warsaw, Poland, 16-19 September 2013
  • D.G. Kvashnin, P.B. Sorokin, L.Yu. Antipina, D.V. Golberg, L.A. Chernozatonskii, The explanation of the unzipping process of WS2 nanotubes by theoretical methods, Proceedings of XVI Annual International Youth Conference "Biochemical Physics" IBCP RAS, Moscow, Russia, October 28-30 2013.
  • Yu.A. Kvashnina, A.G. Kvashnin, I.V. Dudenkov, L.Yu. Antipina, T.P. Sorokina, P.B. Sorkin, New carbon allotropes: mechanical and electronic properties, Zelenograd, October 2-3 2013, p. – 71
  • L.Yu. Antipina , S. Entani, P.B. Sorokin, P.V. Avramov, M. Ohtomo, Y. Matsumoto, H. Naramoto, S. Sakai. “Unexpected strong interaction at the single-layer graphene/α-Al2O3(0001) interface” // Atomic structure of nanosystems from first -principles simulations and microscopy experiments, Physics Boat Workshops, Helsinki, Finland - Stockholm, Sweden, 4-6 June 2013.
  • L.Yu. Antipina , P.B. Sorokin. “The high hydrogen adsorption rate material based on graphane decorated with alkali metals” // Novel 2D materials: Tuning electronic properties on the atomic scale, CECAM workshop, Bremen, Germany, 10-14 June 2013


Reports:
  • P.B. Sorokin, Diamond films with nanometer thickness: synthesys, characteristics, applications, Report at the seminar in FSBI TISNCM (download pdf)
  • Sorokin P.B. Theoretical investigation of Diamond films with nanometer thickness, Report at the Technological Institute of Dresden (Germany) (download pdf)

2012

Papers in scientific journals:
  • Chernozatonskii L.A., Mavrin B.N., Sorokin P.B., Determination of ultrathin diamond films by Raman spectroscopy // Physica Status Solidi B 2012. V.8. P. 1550-1554 (DOI: 10.1002/pssb.201147478, download pdf).
  • Determination of ultrathin diamond films by Raman spectroscopy / L.A. Chernozatonskii, B.N. Mavrin and P.B. Sorokin // Physica Status Solidi B – 2012 (DOI: 10.1103/PhysRevB.86.085435, download pdf).
  • Chernozatonskii L.A., Kvashnin D.G., Sorokin P.B., Kvashnin A.G., Brüning J.W. Strong, Influence of Graphane Island Configurations on the Electronic Properties of a Mixed Graphene/Graphane Superlattice // J. Phys. Chem. C 2012. V.116, №37. P. 20035-20039 (DOI: 10.1021/jp304596y, download pdf).
  • Avramov P.V., Fedorov D.G., Sorokin P.B., Sakai S., Entani S., Ohtomo M., Matsumoto Y., Naramoto H. Intrinsic Edge Asymmetry in Narrow Zigzag Hexagonal Heteroatomic Nanoribbons Causes their Subtle Uniform Curvature // J. Phys. Chem. Lett. 2012. V.3. P. 2003-2008 (DOI: 10.1021/jz300625t, download pdf).

Participations in conferences:
  • Kvashnin A. G., Sorokin P. B., Chernozatonskii L. A., Ultrathin diamond nanofilms as possible two-dimensional insulator: electronic and elastic properties, Abstracts of International conference “Towards Reality in Nanoscale Materials V” (TRNM V), Levi, Lapland, Finland, 20-22 February 2012, p. – 72.
  • Filicheva Yu. A., Kvashnin A. G., Sorokin P. B., Theoretical investigation of the diamond films with implanted oxygen atoms, Abstracts of International conference “Towards Reality in Nanoscale Materials V” (TRNM V), Levi, Lapland, Finland, 20-22 February 2012, p. – 62.
  • Yu. A. Filicheva, L. Yu. Antipina, A. G. Kvashnin, P. B. Sorokin, New superhard carbon modifications: structure and properties, Conference proceeding and abstracts of eighteenth Russia scientific conference of physicist and young scientists, Krasnoyarsk, Russia, 29 March – 5 April 2012, p.-641.
  • Filicheva Yu. A., Kvashnin A.G., Antipina L. Yu., Sorokin P. B., «New superhard carbon allotropes: elastic and electronic properties». The IV International Seminar on Nanosciences and Nanotechnologies, Ciudad de la Habana, Cuba, 17-19 September 2012.
  • Kvashnin A. G., Sorokin P. B., Chernozatonskii L.A., Particularities of phase transitions in ultrathin diamond films: theoretical study, Proceedings of XII Annual International Youth Conference "Biochemical Physics" IBCP RAS, Moscow, Russia, 29-31 October 2012.
  • A. G. Kvashnin, L. A. Chernozatonskii, T. P. Sorokina, P. B. Sorokin, Theoretical investigation of the properties of ultrathin diamond films, Proceedings of the Eighth International Conference on Carbon: fundamental problems of science, materials science, technology, Moscow, Troitsk, Russia, 25 - 28 September 2012.
  • Yu. A. Filicheva, A. G. Kvashnin, T. P. Sorokina, P. B. Sorokin, Structure and properties of new carbon allotropes, Proceedings of the Eighth International Conference on Carbon: fundamental problems of science, material science, technology, Moscow, Troitsk, Russia, 25 – 28 September 2012, p.-533.

2011

Papers in scientific journals:
  • Sorokin P. B., Singh A. K., Lee H., Antipina L. Yu. and Yakobson B.I. Calcium-Decorated Carbyne Networks as Hydrogen Storage Media // Nano Lett. – 2011. – V.11, №7. – PP: 2660–2665 (DOI: 10.1021/nl200721v, download pdf). See also on the topic: phys.org/news/2011-06-carbon-grapevine-hydrogen.html.
  • Chernozatonskii L. A., Sorokin P. B., Kuzubov A. A., Sorokin B. P., Kvashnin A. G., Kvasnin D. G. and Yakobson B. I. Influence of Size Effect on the Electronic and Elastic Properties of Diamond Films with Nanometer Thickness // J. Phys. Chem. C – 2011. – V.115, №1. – P.132-136, (DOI: 10.1103/PhysRevB.86.085435, download pdf).

Participation in conferences:
  • Sorokin P. B., Chernozatonskii L. A., Avramov P. V., Kvashnin A. G., Electronic and elastic properties of diamond films with nanometer thickness, Book of abstracts International conference “Advanced carbon nanostructures”, St Petersburg, Russia, July 4-8, 2011, p. – 182.
  • Chernozatonskii L. A., Artyukhov B. I., Biro L., Mark. G., Sorokin P. B., Kvashnin A. G., Kvashnin D. G., Yakobson B.I., Nanostructures based on H- (or F-) atom functionalized graphene elements for electronic and optic nanoengineering, Book of abstracts International conference “Advanced carbon nanostructures”, St Petersburg, Russia, July 4-8, 2011, p. – 26.
  • Ribas M. A., Singh A. K., Sorokin P. B., Yakobson B. I. Nanoroads and Quantum Dots on Fluorinated Graphene Abstracts of Joint International Conference, Book of abstracts International conference “Advanced carbon nanostructures”, St Petersburg, Russia, July 4-8, 2011, p. – 105.
  • Kvashnin A. G., Sorokin P.B., Investigation of the features of phase transitions in ultrathin diamonds, Abstracts of the conference of young scientists of the Ural region with international participation, Perm, Russia, October 6-7, 2011, p. – 144.